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Note 

Economising Plasma Simulation by 

Total Neglect of the Displacement Current 

The modeling of plasmas using particles is a mature field of research [ 11, but 
standard explicit methods are numerically stable only when the space and time steps 
are sufticiently small to resolve all space and time scales. The most serious 
constraints arise from light waves, the Langmuir mode and the Debye length, 1” 
12, 3 1. Considerable effort has recently been made to overcome these restrictions by 
using implicit schemes [4, 5 1. 

We draw attention here to the advantages of neglecting the displacement current in 
allowing larger space and time steps in numerical models, and so extending their 
application. This eliminates light waves and the Langmuir mode from the model, and 
since the electric field must no longer be calculated from the charge density (because 
the quasineutral approximation has been made) the Debye length does not enter the 
problem. 

Earlier work [6, 71 has shown how use of the Darwin limit of Maxwell’s equations 
(i.e., neglecting the transverse displacement current) can eliminate light waves from 
the model while retaining many plasma properties. Nielson and Lewis [7] regard the 
total neglect of the dislacement current as naive, but it is common enough in 
analytical work, it significantly reduces the cost of computation relative to the 
Darwin model, and we believe that there is a range of modeling projects for which it 
is appropriate. The expense of large plasma models means we must justify inclusion, 
rather than neglect, of any term. An intelligent guess at the condition for importance 
of the longitudinal part of the displacement current is provided by the warm plasma 
model for ion acoustic waves. Writing dpjdp = a2 for each species, the dispersion 
equation is 
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and the right-hand side comes from the displacement current, so that neglec. Df this 
changes the right-hand side to zero. The Langmuir mode is apparent in the electron 
term and for the ion acoustic mode this term may be approximated by -(U,)-’ 
using ;1, = adcop,. Then 

w2 = k2af + 3 k2a: 
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and neglect of the displacement current deletes (1 + k’1;)-’ in the last term. It is 
therefore reasonable to suppose that our condition is kl, < 1, and more vaguely. 
scales of the order of the collisionless skin depth or larger are suggested. 

When the displacement current is totally neglected the key equations are Ampere’s 
law, 

VxB=pOJ, (1) 

and its time derivative in the form 

vx(VXE)=-P~$ (2) 

Equation (2) replaces Poisson’s equation; that it is necessary to find an alternative 
has been explained by Hewett and Nielson [6] and the value of V - E will not be 
needed. The condition for the neglect of the longitudinal part of the displacement 
current in Eq. (2) is a*E/&* 4 o;E. 

It might appear that electrostatic phenomena would then be excluded, but the elec- 
trostatic approximation to Eq. (1) is simply J = 0 which, for instance, allows acoustic 
waves. 

Although the solution of Eq. (2) may be somewhat involved it will be worthwhile if 
the time step is sufficiently increased by the method. aJ/ar must be expressed as a 
function of E using the plasma model, which can take a variety of forms. Our 
comments are based on the separation of ~?J/at into two parts: 

aJ/at = @J/at), + a(x, t) E, (3) 

where (aJ/at), is simply the value aJ/at would have if E were zero. For fluid 
components (aJ/ar), can be obtained from stored fluid variables, as Nielson and 
Lewis [7] have pointed out. But for components where this is not possible, for 
example, particle or waterbag representations, J must be obtained from the model. 
and (aJ/at), obtained by running the model with zero E for one time step. 

We will first examine a hybrid plasma model which includes both fluid and kinetic 
electrons. This allows us to satisfy Eq. (1) by using it to find the fluid electron 
current, and quasineutrality is used to set the electron fluid density. 

The term a(x, t)E in Eq. (3) represents the dependence of aJ/Bt on E, which is 
surely linear. We can apply very basic plasma theory [8] which obtains aJ/af from 
the first moments of the Vlasov equations for each species, and it is easily seen that 
in this case a(x, t) is simply EROS, which must be supplied from the model. A 
common approximation is neglect of the time derivative of the current in Ohm’s Law, 
when the electric field is then given algebraically. In some astrophysical problems, 
however, such as magnetospheric neutral sheets, and in some laboratory plasmas, the 
scale lengths approach the collisionless skin depth so we must retain this term. This 
case, a(x, t) = eO wi, where w,, is a function of space and time via the density, will 
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serve to clarify the nature of the equation to be solved for E. Substitution into Eq. (2) 
gives 

In two dimensions considerable simplification of this coupled pair of partial 
differential equations is possible. If E = (EE,, E,, 0), and we write p for the z- 
component of V x E, then multiplying Eq. (2) by Af = c’/wi and taking the curl gives 

v * (/If Vp) -p =/lo2 * v x 
L c (3,1* 
,I2 (5) 

This clarifies the boundary conditions which can be imposed on the electric field. 
Since the differential operator is elliptic we could apply Dirichlet conditions, but it 
may be more useful in physical problems to use Neumann conditions, since the 
normal derivative can be specified by E, and E,, using Eq. (4): 

(6) 

Equations (6) and (7) are then used to find the electric field once p has been found. 
The differenced form of Eq. (5) will be symmetric and diagonally dominant, and 
could be efficiently solved using, for example, the ICCG method [9]. Equation (5) 
provides a clear demonstration of the economy obtained relative to the Darwin model 
as it is of the same form as one of the equations whose solution is required by Hewett 
and Nielson [6]. While Eq. (5) is the only expensive equation in our lield solver 
theirs involves three elliptic equations, including one which requires iteration. 

For the case of plasma models without fluid components, particle or waterbag 
models, for example, it requires more effort to self-consistently satisfy Eq. (2) (and 
hence Eq. (l), which is no longer used) at each time step, and some iteration is 
necessary. This is because aJ/at at one mesh point may depend on not only the E 
value at that point but also on the E values at surrounding points. In a particle 
model, for instance, interpolated E values must be used to push the particles. The 
dominant effect is proportional to the difference between E at a mesh point and the 
mean of the E values at surrounding mesh points, i.e., proportional to V’E, so that its 
importance depends on the scale length for E relative to the mesh spacing. If the field 
is smooth relative to the mesh, iteration should converge rapidly enough. Since 
(wi/c’)E will still be the leading component of 3JJlat we suggest the following 
iteration scheme for solving Eq. (2): 

co2 AE”+I=VX(VXE”)- 
c2 
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where (aJ/at)” is found from the model by time-stepping the particles using E” for the 
electric field. It would be expected that the limitation on the time step relates to the 
time taken for a particle to cross a cell, but explicit particle models are similarly 
limited in relation to the calculation of acceleration of single particles. 

The ideas described here have been used so far in only a restricted linear 
simulation, but Eqs. (2) and (3) are always linear. The linearity allows us to Fourier 
transform in one of the two space dimensions, so that Eq. (2) becomes a pair of one- 
dimensional differential equations. Equations (2) and (3) were used to obtain values 
of E and these were used to push the kinetic electrons, the ions and the magnetic 
field, but the velocity of the fluid electrons was found from Eq. (1). Another 
simplification, due to linearisation, was that a was the same at each time step. 

The actual method of solving Eq. (2) for E was to notice that Fourier transfor- 
mation in the x-direction allows the E, component to be eliminated from Eq. (2). 

If 
E = eik”(E,(y), E,(y), 0) 

then E,, can be found from a second-order ordinary differential equation by the well- 
known tridiagonal matrix algorithm. The convenient and not unreasonable boundary 
condition E, = 0 at both boundaries was successfully employed. E, can then be found 
from an algebraic equation involving source terms and the first derivative of E?. 
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